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Summary. A new variational method for solving the molecular vibration problem 
is proposed. The so-called VMCSCF method (vibrational multiconfigurational 
self-consistent field) is based on the super-CI algorithm, previously developed in 
the framework of electronic ab initio calculations. This approach makes direct use 
of the generalised Brillouin theorem to ensure self-consistency. The method is 
dedicated to the study of strongly interacting states (vibrational resonances), which 
are one of the main sources of perturbation in vibrational spectra. The interest of 
the method to tackle resonance interactions is illustrated by means of test calcu- 
lations performed on the water and formaldehyde molecules. 
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1 Introduction 

Extensive work has been done in the last decade to develop methods of resolution 
of the pure vibrational or rovibrational Schr6dinger equation, beyond the har- 
monic and rigid rotor approximations. Such vibrational structure studies were 
made possible by the constant improvements in computational Quantum Chem- 
istry methods which now allow the determination of accurate potential energy 
surfaces (PES). The recent development of analytical derivation techniques (see for 
instance [1-5]) is a very important contribution to this state of affairs, along with 
some numerical approaches [6, 7] that can be used in principle at any level of 
theory, including the most precise multireference CI. 

The resolution of the vibrational Schr6dinger equation makes the connection 
between Quantum Chemistry and experimental spectroscopy. It allows the theorist 
to predict spectroscopic properties, starting from ab initio PES, and enables the 
spectroscopist to derive empirical PES from infrared spectra. Numerous experi- 
mental techniques have recently appeared such as stimulated emission pumping 
(SEP), laser induced fluorescence (LIF) and Fourier transform spectroscopy 
(FTIR) allowing the study of highly excited vibrational states and even chaotic 
regions [8-10]. To exploit and interpret these data one needs refined theoretical 
tools to make predictions of properties like energy or transition moment and to 
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analyse the content of the wave function. The long-term goal of these studies, both 
experimental and theoretical, is the understanding of the dynamical behaviour of 
highly excited polyatomic molecules. 

Among the theoretical methods, those arising from the application of the 
variational principle are of greatest interest. They are not limited, as the pertur- 
bative approaches, to the representation of small amplitude motions from the 
equilibrium position and can moreover take the interactions between quasi-degen- 
erate levels (resonances) straightforwardly into account. 

Different implementations of the variational method are reported in the litera- 
ture. They differ by the form of the nuclear kinetic energy operator TN, by the 
analytical form of an approximated nuclear potential function VN, by the method 
used to determine the parameters of this potential and by the choice of vibrational 
coordinates and basis functions in which the hamiltonian matrix is set up. The 
respective advantages and disadvantages of these methodological alternatives are 
discussed in the literature [11, 12] and we will only summarise hereafter the more 
important trends. 

Internal coordinates are often preferred to normal ones [11-19] because they 
allow for better separability and factorisability of the hamiltonian, as well as 
a more sensible representation of the PES for large amplitude motions. However, 
the analytical form of the kinetic operator is different for each type of molecule in 
those kinds of coordinates, and its determination is quite a tedious task. Further- 
more, a different computer program has to be written for different kinds of 
molecule or coordinate systems. 

In the normal coordinate system, also used by some authors [20-31], the form 
of the hamiltonian (Watson hamiltonian) is simpler and is only specific to linear 
[321 or non-linear [331 molecules. It is however important to take care, as reported 
in [341, of the pathological singularities that occur when a non-linear molecule 
significantly samples linear geometries. Moreover, in order to factorise the Watson 
hamiltonian as a sum of products of one-mode terms, the inertia matrix has 
to be expanded in a Taylor series [33] or fixed to its equilibrium value. This 
latter approximation further simplifies the hamiltonian matrix and interferes only 
slightly with the Coriolis co!~pling terms. 

The potential function, VN, can either be deduced from experiments, by means 
of a least-squares fit to spectroscopic data [19, 35-37], or, more often, it can be 
constructed from ab initio calculations of the electronic energy as a function of the 
nuclear coordinates. 

Once TN and 17 N have been determined, the next step is the set-up of 
the hamiltonian matrix in a carefully chosen basis set. This choice will deter- 
mine the accuracy of the results and attention must be paid [11] to the 
completeness of the basis set, and to its ability to properly manage the singular 
terms of TN. 

The choice of an appropriate one-dimensional basis set for each vibrational 
motion is decisive, as it defines the building blocks of the n-dimensional wave 
function and will therefore determine its quality (flexibility and compactness). 
Among the different kinds of basis functions that have been presented in the 
literature, the most standard delocalised primitives are Morse, associated Legendre 
and Fourier functions, respectively, used for stretching, bending and torsional 
internal coordinate motions and simple harmonic oscillators for normal modes. 
The introduction of localised one-dimensional basis sets, through the so-called 
discrete variable representation method (DVR) [17, 18], is certainly one of the 
major recent advances in this field. 
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The building up of the multi-dimensional basis sets by simple products of 
one-dimensional primitives often leads to the resolution of huge secular matrices, 
even for small systems. To give an order of magnitude, the number of such products 
(given by p(3U-6), for an N-atomic system and basis sets of p primitives for each 
vibrational motion) is 8 x 103 and 64 x 10 6, respectively, for N = 3 to 4 (with 
p = 20). Although these numbers correspond to upper limits of the actual sizes of 
the multi-dimensional expansions (such estimations do not take the symmetry 
of the system into account), they clearly show that new alternatives for diminishing 
the basis set sizes will be welcomed for tackling larger systems. 

One solution adopted by different authors [38~43] is to consider some kind of 
effective decoupling between the modes, on the basis of physical criteria such as the 
symmetry of the modes, their frequency, or the value of potential coupling terms. 
An attractive way of reducing the size of the hamiltonian matrix is to optimise the 
wave function by successive steps [15, 17, 18,44, 45]. The philosophy of this 
approach is to solve the one-dimensional problems formed by each separate mode 
and use the eigenfunctions as a basis set for some two- or three-dimensional 
calculations, and so on, until the full ( 3 N -  6)-dimensional problem is solved. 
Another interesting approach consists of optimising variationally the basis set in 
a compact form and using it in a further variational calculation. This idea is 
developed in a family of methods [20, 24, 43, 48-50] based on the self-consistent 
field (SCF) and configuration interaction (CI) models, directly derived from stan- 
dard electronic ab initio methodology. In the so-called VSCF method [20] (vibra- 
tional SCF), the variational method is applied to a trial function expressed as 
a single vibrational configuration, i.e. a single product of an anharmonic oscil- 
lator's functions {&): 

Nv 

7%scv = 1~ qS/, (¢~), (1) 
v = l  

where Nv is the total number of vibrational degrees of freedom (Nv = 3N - 5 or 
3 N -  6, respectively, for a linear or non-linear N-atomic molecule), ¢~ is the 
vibrational coordinate associated with the vth oscillator and k is the corresponding 
quantum number. This leads to a set of coupled equations, one for each of the Nv 
oscillators, in which an effective potential describes the interaction of this oscillator 
with the mean field created by the other ones. The system of coupled equations can 
be solved iteratively either by numerical [48, 49J or analytical [20, 46] techniques. 
In this latter solution, each anharmonic oscillator (AO) function is linearly ex- 
panded over a basis set of analytical functions {~2}: 

p 

~b~(~v) = Z d-kg2,(~-~) • (2) 
a = O  

As in any mean field approach, the VSCF method introduces a correlation 
error due to the effective nature of the interactions between the oscillators. This 
error can be large when the interactions are strong [26], and a further variational 
treatment is required to explicitly introduce the correlation effects. The latter 
treatment consists of a configuration interaction calculation, i.e. the diagonalisa- 
tion of the nuclear hamiltonian matrix in a basis set of vibrational configurations 
(simple products of AOs), built from the AO's basis set resulting from the previous 
VSCF optimisation. The CI wave function can then be written as 

M 

~ci = CoCo + ~ c3';, (3) 
i = i  
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where ~o represents the reference configuration (Eq. (1)), i.e. the configuration on 
which the VSCF optimisation has been performed and the {7Ji} are virtual 
vibrational configurations resulting from the replacement in 7J0 of one or more 
AOs by virtual VSCF AOs. The so called VSCF/CI two-step procedure is quite 
flexible. It can be performed on any VSCF configuration and the virtual configura- 
tion space, of dimension M, can be limited using different criteria [50] (energy 
threshold, vibrational quantum number range for each mode or maximum total 
number of vibrational excitations). 

The exact variational solution corresponding to the chosen basis set (2) is 
obtained when no restrictions are introduced in the sum appearing in Eq. (3). The 
corresponding variational calculation will be referred to hereafter as VFCI (vibra- 
tional full-CI). In this case, the wave function being invariant to any unitary 
transformation of the basis set, the optimisation of the AOs basis set is no longer 
required. 

The VSCF/CI procedure can be efficient, even with a small number of config- 
urations, when these are carefully selected using the appropriate criteria, and when 
the vibrational states of interest are essentially represented by a single vibrational 
configuration. In that case, the CI-coefficient Co in Eq. (3) is close to 1.0. In contrast, 
when two or more configurations interact strongly, the VSCF/CI method fails. The 
eigensolutions dramatically depend on the choice of the 7~o configuration and 
a basis set dependency problem occur. This comes from the fact that the VSCF 
procedure provides an AO's basis set optimised for a given single configuration but 
not for a set of strongly coupled configurations. The problems discussed above will 
of course disappear if the CI expansion tends to the full-CI limit. 

VFCI-like calculations (vibrational full-CI) are possible from a computational 
point of view, for small molecules only, essentially for 3-atom [35, 36, 51-55] and 
4-atom [-19, 53, 55] molecules. The latter case is however close to the computa- 
tional limit, with large basis sets (up to 500 000 functions in [53]) requiring special 
techniques to cope with such large matrices. 

Alternatives to the VFCI method therefore are welcomed for treating larger 
molecules at a similar level of accuracy. One solution consists of reducing the size 
of the multi-dimensional wave function by a more efficient optimisation of the 
one-dimensional basis sets. Even for small molecules, it can be helpful to find more 
compact wave functions than those obtained for VFCI. Indeed, the compactness of 
the wave functions can greatly clarify the physical interpretation of spectroscopic 
observations (bands assignments, analysis of intensity features, understanding of 
anharmonic couplings, etc.). 

The problem of the optimisation of a multi-dimensional basis set in terms 
of a previously optimised one-dimensional one is of course not specific to the 
vibrational SCF theory but has also been encountered in electronic SCF theory for 
a few decades. The solution universally adopted in atomic [-56] and molecular 
[57-61] electronic calculations is to replace the single-configurational SCF ap- 
proach by a multiconfigurational one (MCSCF), involving at least the most 
important configurations and implying the simultaneous optimisation of both 
orbitals and configuration mixing coefficients. 

MCSCF methods in a rovibrational context have not been exploited till now, 
except in a formal attempt by Tobin and Bowman 1-62] and in test calculations 
performed with a second-order algorithm by Schwenkc [63]. This kind of method 
would however be particularly well adapted to study the strong vibrational 
configuration mixings that frequently occur in polyatomic molecules. They corres- 
pond to resonance phenomena [64] (Fermi, Darling-Dennisson and Coriolis 
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resonances) generated by the rapid increase of the density of states with the 
vibrational excitation energy. 

The importance of configuration mixing in the study of the vibrational struc- 
ture of molecules has motivated us to develop a vibrational MCSCF method 
(VMCSCF) and write the corresponding computer program. The algorithm has 
been elaborated in taking benefit of the large experience of MCSCF techniques 
acquired up to now in Quantum Chemistry. The algorithm developed in this work 
is based on the super-CI method proposed by Grein and Chang [65] in the 
molecular electronic context, implemented in Quantum Chemistry packages 
[66, 67] and applied to many molecular problems. The super-CI algorithm is an 
interesting alternative to the methods based on Lagrangian multiplicators [57] or 
on second-order density matrices [59, 60]. It uses the generalised Brillouin theorem 
to enforce the variational self-consistency. 

The present paper is devoted to the description of an MCSCF algorithm for the 
vibrational problem (VMCSCF) and to some test calculations. In Sect. 2, we recall 
the general expression of the BriUouin theorem and describe the philosophy of the 
super-CI algorithm; Sect. 3 is devoted to a detailed analysis of the different steps of 
the algorithm, the implementation of a "state average" optimisation option is 
discussed in Sect. 4 and we present some test calculations on water and formalde- 
hyde in Sect. 5. 

A detailed formulation of the Brillouin theorem for vibrational self-consistent 
wave functions and an analysis of the symmetry and orthogonality properties of 
the Brillouin singly excited functions, for both the non-degenerate and degenerate 
cases, will be presented in a forthcoming paper. 

2 The Brillouin theorem and its relation to the VMCSCF 
optimisation algorithm 

The generalised Brillouin theorem (GBT) [68-70] is a direct consequence of the 
stability of a self-consistent wave function to a small perturbation applied on the 
anharmonic mode-oscillators or, in the electronic context, the molecular orbitals. It 
states that the hamiltonian matrix element between a self-consistent wave function 
(the solution of our problem) and a single excitation is zero. 

Let us write a general multiconfigurational function as 

t//VMC = 2 Ci ttli' (4) 
i 

where 7'/ is a vibrational configuration, i.e. a simple product of anharmonic 
mode-oscillator functions. 

The single excitation is generated by the replacement of one occupied oscillator 
(an oscillator present in 7*VMC ) by another, either occupied or unoccupied. If we 
consider the replacement of the oscillator k by the oscillator 1 on the mode v, we 
can write the associated Brillouin condition: 

( ~vMc IHI  7'y,~ ) = O, (5) 

where 7Jy, t is a multiconfigurational function defined as 

7J~t = y"  c i ( 7 ' i ( v ;  k --+ I) - T i ( v ;  I --+ k)) .  (6) 
i 

7'i(v; k --+ l) corresponds to the replacement of ~b~ by qS~ in the configuration ~'i. 
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The second term of Eq. (6) corresponds to the reverse excitation and has to be 
taken into account in order to keep the oscillator's basis set orthogonal. 

Equation (6) can be rearranged to 

= F, b° (7) 
n 

where the { 7/, } are the configurations involved in the single excitations. 
A direct consequence of this theorem is that the reference function cannot mix 

with any single excitation in a CI calculation involving only the reference and the 
single excitations. The main idea behind the super-CI algorithm is to force a trial 
reference function to respect that condition. The algorithm is then built on two 
successive CI steps leading, respectively, to the optimisation of the MC coefficients 
({c} in Eq. (4)) and of the AO coefficients ({d} in Eq. (2)). The first C! solves the MC 
problem (4), with frozen {d} coefficients. The second one diagonalises the hamil- 
tonian matrix in the so-called SX space, corresponding to the superposition of the 
reference function and its single excitations, with frozen {c} coefficients. The effect 
of the single excitations is then incorporated into the reference by a transformation 
of the oscillator's basis set. 

30ptimisation algorithm 

Let us mention briefly the successive steps of the algorithm before describing them 
extensively; some further extensions to the algorithm, needed for the determination 
of excited states, will be discussed afterwards. 

1. Determination of an initial guess for the oscillators {qS}. 
2. Resolution of the CI problem associated to the configurations of 7%MC 

(MC space); build-up and diagonalisation of the hamiltonian matrix in this 
basis set. 

3. Creation of the single excitations according to expression (6). 
4. Canonical orthonormalisation of the single excitations. 
5. Build-up of the hamiltonian matrix in the basis set formed by the reference and 

the single excitations (SX space). 
6. Diagonalisation of the matrix defined at step 5. 
7. Back-transformation to the original single-excitations set. 
8. Transformation of the oscillator's set, using the expression of the eigenfunction 

obtained at step 6. 
9. Resolution of the CI (MC) problem associated with the configurations of 

7JvMc in this new basis set. 
10. Back to step 4 and iteration until convergence. 

3.1 Initial guess 

As the Brillouin theorem is only valid at the first order of perturbation, it is 
important to start with a good initial guess, which will reasonably allow one to 
ignore the higher-order terms. This can be achieved by a VSCF calculation on one 
of the configurations involved in the MC expansion. The initial oscillators can also 
be taken from a previous MCSCF calculation. 
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3.2 Resolution of the CI secular problem associated with the MC space 

This step is equivalent to a standard CI calculation performed in the MC space. 
There is no systematic way of choosing the configurations in an ordinary MCSCF 
calculation; they are taken one by one according to their alleged importance. One 
must at least include those necessary to represent all the states having a lower 
energy than the optimised states; otherwise the variational procedure could con- 
verge on one of these non-included lower states. This manual choice is coherent 
with the general philosophy of the method which tends to concentrate as much 
information as possible in a small number of configurations carefully chosen and 
fully optimised. One can however test the validity of the choice by using the 
VMCSCF optimised oscillators in a larger C! calculation and, if some important 
contributions occur, extend the set of MC configurations to these new terms. The 
definition of a set of active oscillators in which all possible excitations are per- 
formed (which is the vibrational equivalent to the electronic CASSCF [61] or 
FORS [71] approach) will be detailed in a forthcoming paper. 

3.3 Generation of the Brillouin single excitations 

Generating the single excitations means determining their number and their 
relevant features for the evaluation of hamiltonian matrix elements, i.e.: the number 
of configurations involved in each single excitation, the quantum numbers which 
characterise those configurations and the CI coefficients that multiply them. This is 
complicated by a series of factors: 

1. The number of configurations in each single excitation is variable. 
2. The sign of the CI coefficient changes if one considers a direct or a reverse 
excitation. 
3. The same configuration can appear in a vast number of single excitations. 

Computationally, this implies that one has to link a series of information (number 
of configurations, CI coefficients, signs, reference numbers of the configurations) in 
several vectors. 

3.4 Canonical orthonormalisation of the SX space 

As already observed in the electronic framework [58], the single excitations are not 
mutually orthogonal; only the reference function is rigorously and systematically 
orthogonal to the whole set of single excitations which, moreover, are generally 
not linearly independent. In order to simplify the CI (SX) calculation, one must 
eliminate the linear dependencies and orthogonalise the set. The canonical 
orthonormalisation scheme proposed by L6wdin [72] allows one to perform those 
two operations simultaneously and proceeds by diagonalising the overlap matrix. 
One defines the overlap matrix element S~j by the following relation: 

= (¢,~ I¢,~ 5, (8) Si j SX SX 

where ~sx refers to the ith function of the SX space, i.e. the reference function or 
one of its single excitations. 

The redundant eigenvectors of this matrix are associated with a zero, or in 
practice very small, eigenvalue. These are eliminated from the set and the 
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remaining ones are weighted by the reverse of the square root of their eigenvalue in 
order to normalise them to unity. One writes the normalised eigenvectors, the 
so-called canonical vectors (CSX), as 

sx = (sk)- 1/2 Z sx 0~  , (9) 
i 

where Sk represents the kth eigenvalue of the 
qk = (Sk)-l/2 pk, Eq. (9) can be rearranged to 

0 sx = Z 0F ×. 
i 

The reference is orthogonal to the whole set of single excitations and is therefore 
left unchanged by this transformation. 

overlap matrix (8). If we set 

(10) 

3.5 Build-up of the hamiltonian matrix in the SX space 

Since the canonical functions have a very complex expression, they are indeed 
combinations of single excitations which in turn are linear combinations of config- 
urations; the build-up of hamiltonian matrix elements between canonical functions 
is therefore done in several steps: 

1. Calculation of the hamiltonian matrix elements between all the configurations 
included in the single excitations and the reference function 

H,,, = (O,[H]~,,}. (11) 

2. Calculation of the hamiltonian matrix elements in the space formed by the 
reference and the original (non-orthogonalised) single excitations 

H~ sx = ( 0  sx Igl 0 s.x}J . (12) 

These matrix elements can be developed to (cf. Eq. (7)) 

H, sx = Z Z b, bmH, m. (13) 
! m 

3. Transformation of the matrix to the canonical set. 

The hamiltonian matrix elements between canonical vectors can be written as 

H ~  x = <¢,~sx I HI ¢,~sx }. (14) 

Replacing (10) into (14), one obtains 

HCkSX = Z Z qiqjHi~ x" (15) 
i j 

3.6 Diagonalisation of H csx and identification of the reference function 

This operation can now be done by an ordinary diagonalisation procedure since 
the basis set is orthonormal. We are indeed only interested in a single eigenvector, 
the one corresponding to the reference function, but there is generally no one-to- 
one correspondence between any eigenfunction of the SX problem and the refer- 
ence. Such a relation exists only when the optimised state is the fundamental one. 
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In such a case the 9ood SX eigenfunction is the lowest. One has then to 
test every eigenvector and keep the one in which the reference has the largest 
coefficient. 

However, the procedure can be adapted to give in all cases a dominant 
coefficient to the reference function in the lowest-lying eigenvector. By shifting the 
reference's diagonal hamiltonian matrix element to an arbitrary energy under the 
fundamental state, one can assign the lowest eigenvalue to the reference function. 
This trick, known as the level-shift technique in Quantum Chemistry [73, 74], 
allows a much better convergence on excited states since it removes the strong 
mixing that appears between accidentally degenerate SX eigenfunctions. The use of 
such an artefact is justified because, by virtue of the Brillouin theorem, H sx is 
block-diagonal at convergence. One can then change arbitrarily the reference's 
energy and leave all the eigenvectors unchanged. In that context one could use 
a Davidson algorithm to calculate only the lowest eigenfunction. Nevertheless, this 
diagonalisation takes only a small fraction of the computer time needed to run the 
whole procedure. 

3.7 Back-transformation to the original single excitations 

To transform the oscillator's basis one has to use the expression of the SX function 
in the { 7 ~sx} single-excitations set. Indeed, the canonical functions are meaningless 
in the sense of the Brillouin theorem. 

Let us write the SX eigenfunction, in terms of the canonical vectors, 

~ESX = Z rk tpcsx. (16) 
k 

Replacing the canonical vectors by their expression (10) leads to 

'w ~ k ~ISX 
~ESX = ~ rk L qi • (17) 

k i 

By inverting the summations and rearranging, one obtains 

$ESX = ~ ~SX ~, rkq~. (18) 
i k 

If we set ai = 2rkq~, we can rewrite Eq. (18) to 
k 

OESX = ~ a, O sx (19) 
i 

or, returning to the original notation for the single excitations, 

Nv 

OEsx = aooOo + ~, 2 2 a~z O~l, (20) 
v- -1  k l # k  

where a~ represents the weight of the single excitation associated with the replace- 
ment of the oscillator k by the oscillator I on the mode v. Those coeffÉcients will be 
used in the next step to transform the AO basis set. For  a perfectly converged 
MCSCF wave function, they should all be equal to zero, except aoo. This latter 
property can also be used as an indirect test of the Brillouin theorem. 
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318 Transformation of the oscillator's basis set 

In a basis set of p + 1 primitive oscillators, an arbitrary anharmonic oscillator of 
quantum number k on the mode v is transformed according to 

p 

~b~,[n+ 1] = a { ~ [ n l  + ~, a~l#)r[n], (21) 
l=O,l=/=k 

where n is the number of iterations. 
This latter transformation applies to all the basis functions, occupied or virtual. 

To perform it we need to determine all the (p + 1)*(p + 1) a~ coefficients. These are 
taken from Eq. (20) completed by two orthonormality relations 

p 
(a~k) 2 = 1 - ~, (a~l) 2 ,  (22) 

l = O , I C k  

a~k = - a~,l. (23) 

Expression (22) implies, as a phase condition on 0~sx, that the coefficient of the 
reference function must be  positive. The orthogonality constraint (23) is satisfied to 
the first order. 

In order to keep a basis set perfectly orthogonal (to all order of perturbation), it 
is nevertheless advised to orthogonalise the new basis set. Otherwise, the ortho- 
gonality could be progressively deteriorated by the higher-order terms along the 
successive iterations. In our implementation, a Schmidt orthogonalisation proced- 
ure is used for this purpose. 

Two different options can be chosen to transform the oscillators: one can 
transform the actual oscillators and re-evaluate the mode integrals in the new basis 
set or one can transform directly the mode integrals. The expression of the 
oscillators is not needed to run the calculation, the evaluation of the hamiltonian 
matrix only requires the mode integrals, it is then faster to transform them directly. 
However, it is highly desirable to know the AO coefficients in order to monitor the 
convergence of the procedure. It is also crucial to produce the converged oscillators 
in order to determine the wave function completely so that it could be used to run 
a further VMCSCF or VCI calculation or to evaluate any vibrational property 
such as a dipole moment matrix element. We chose to transform separately the 
oscillators and the integrals at each iteration to avoid a costly re-evaluation of the 
integrals and keep all the information on the wave function. 

3.8.1 Transformation of the LCHO basis set. Applying transformation (21) to an 
anharmonic oscillator (2), one obtains the expression 

qS~[n + 1] = ~ dak[n + 1] ~a(~)  = ~, a~l ~, dbk[n] {2b(~v). (24) 
a--0  / = 0  b=0  

The expression of the new {d} coefficients is derived by multiplying (24) to the left 
by f2* (~) and integrating over ~v" 

dak[n + 1] = ~ a~ldaz[n]. (25) 
/ = o  

3.8.2 Integrals transformation. Let us write the matrix element of a one-mode 
operator f ( ~ )  taken between two transformed functions qS~[n+ 1] and 
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q~,~,[n + 13: 

v v 

l = O , l @ k  

which can be rearranged to 

237 

a~m~b, ~[n , (26) 
n=O,lv~m 

This expresses the relation between the mode integrals at iterations n and n + 1. 

3.9 Resolution of  the MC problem in the new basis set 

This step is identical to the second step but is performed in the new AO basis set. It 
produces a new guess for the CI (MC) coefficients that can be used along with the 
new oscillator's coefficients to run a further iteration of the procedure. 

3.10 Convergence criteria 

The procedure from steps 4 to 9 is applied iteratively until convergence obeys the 
following criteria: 

1. The energy of the SX eigenfunction must converge to the MC energy, since the 
two functions must be identical at convergence: 

]EMc[n] -- EEsx[n] [ ---- •1 ~ 6. (28) 

2. The difference between the SX energies at iterations n and n - 1 must converge 
beyond a user-fixed threshold: 

[Ezsx[n] -- EEsx[n -- 111 = 62 ~< 6'. (29) 

3. The difference between the MC energies at iterations n and n - 1 must converge 
beyond a user-fixed threshold: 

[EMc[n~ -- EMcEn -- 11[ = c~3 ~ 6". (30) 

4. The Brillouin theorem must be verified; i.e. all the single excitations must have 
a zero, or arbitrary small, coefficient on the SX eigenfunction. 

All these conditions must be satisfied simultaneously. The first three can be 
merged in a single condition 

6z + 62 + 63 ~< 6t (31) 

where 6, is a user-fixed threshold. 
In our implementation of the algorithm, condition (31) is tested at every 

iteration. If the criterion is satisfied, the Brillouin conditions are tested (a threshold 
of 10 .5 has been fixed for the largest SX coefficient). The program continues 
running until all the conditions are satisfied or until the maximum allowed number  
of iterations is reached. 
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4 State average MCSCF optimisation 

The procedure described above is perfectly adapted to converge on isolated states, 
usually of low energy. When several states in a close energy range are interacting, 
the convergence can be spoiled by the so-called "root-flipping" phenomenon. This 
occurs when one optimises an excited state which interacts with another one of 
slightly lower energy. The MCSCF procedure tends usually to stabilise the opti- 
mised state and destabilise the others so that two states of close energy can be 
inverted. In such circumstances the procedure can converge on an unwanted state, 
if it converges at all. This problem is not characteristic of our algorithm but is also 
encountered by all the MCSCF procedures developed for the electronic problem. 
In that context, several solutions have been suggested in the literature [75]: 

1. Constrain the wave function to be orthogonal to all the lower-energy state wave 
functions. 
2. Freeze some oscillators (or molecular orbitals) that ensure a good represen- 
tation of the lower-energy states. 
3. Increase the number of MC configurations. 
4. Optimise the basis set (oscillators or MO) for the average of several states, 
usually a group of closely interacting states. 

The first two proposals imply a severe constraint on the variational procedure 
and lead only to a partially optimised wave function. Furthermore, it would be very 
difficult to implement the orthonormatity constraint in our algorithm. 

The third proposal works fairly well and is straightforward to apply, but it is 
opposite to the MCSCF philosophy which aims to optimise a compact wave function. 

The state-average optimisation of the oscillator's basis set seems to be the best 
compromise since it leads to a balanced representation of the interacting states. 
Indeed, the procedure does not favour any of the states included and would not 
deteriorate any of them. Furthermore, a redistribution of the state's energy-order- 
ing will not generate a dramatic change in the oscillator's basis set, since it is 
optimised for the average of those states. This ensures a much smoother and safer 
convergence of the MCSCF procedure. 

Another advantage of this technique is to represent all the optimised states in 
the same basis set so that they are mutually orthogonal. This can be very helpful in 
eliminating some zeroth-order overlap terms, which are meaningless in the compu- 
tation of transition dipole moments [26]. For  that purpose one must include in the 
average the two states involved in the transition. 

This approach has been widely used in the electronic context. Its transcription 
to the Grein and Chang algorithm has been described by Ruedenberg [58]. We will 
detail, in the following subsection, its implementation in our algorithm and its 
impact on the resolution of the SX problem. 

4.1 The state-averaging Jbrmalism 

Let us consider, for the sake of simplicity, a two-state system, the generalisation to 
an n-state system being straightforward. We want to minimise the weighted 
average energy of the states 0 and 1 which can take the form 

WoEo + W~Ez = Wo(7~o lHl~o)  + W1(~1 [ H I T q ) ,  (32) 

where Wo and W1 are the weights given to the states. 
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The only steps modified by the state average option are those involved in the 
build-up of the SX hamiltonian matrix, namely steps 4 and 5. The MC problem is 
left unchanged and the single excitations keep the same expression. The single 
excitations coming out of ~o and 7q are built on the same configuration set, but 
with different values of the MC coefficients. The first set of single excitations is built 
with the MC coefficients of ~o and the second uses the MC coefficients of 7q. One 
writes the hamiltonian matrix H sx as the average of the original H sx matrices 
corresponding to the individual states involved (cf. Eq. (12)): 

/~sx = WoHSX(0 ) + W1HSX(1). (33) 

In order to keep the SX basis set orthonormal one has to build the overlap matrix 
in the same way: 

= W oS(O)  + W1S(1). (34) 

A canonical orthonormalisation, similar to the one described earlier, is then 
performed and the rest of the procedure follows on, as if we had optimised a single 
state. 

The state average option is, in fact, workable only if one uses the energy shift 
technique [74]. The presence of several identical single excitations generate a de- 
generacy or quasi-degeneracy in the canonical function rather than a redundancy. 
This can be easily shown for the trivial case formed by the combination of two 
single excitations, in a two-mode system 

c ~  1~o ~ + c2~o ~ ~ .  (35) 

We wish to optimise the two first roots of this system: 
1 2 ~o = c~o~ q~ + c2q~o~, 

~Jl  1 2 1 2 = - c2qSoqSo + cl~bo~bl. (36) 

Let us write the single excitation from 0 to 2 on the second mode: 

~sx(o ) ~ 2 = C~0o q~2, 

~sx(1) = - c 2 ~  ~b 2, (37) 

and from 1 to 2 on the same mode: 

~,sx(0 ) ~ = c ~ q ~ o ~ ,  

gsx(1) = cl~bo 1 q522 . (38) 

We can then compute the overlap matrix elements according to (34) as 

Si j  = W o c l c 2  - -  W l C l C 2 ,  

Si, = S j j  = W o c  2 - W i c k .  (39) 

If Wo = W1 = 0.5, the overlap matrix takes the form 

d +c~ 
0 

g =  2 c 2 + c ~ (40) 
0 

2 

This matrix has two degenerate, but distinct, eigenvalues. In the case of an ordinary 
one-state optimisation, these two single excitations would have led to a 
redundancy and one of them would have been eliminated by the canonical 
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orthonormalisation procedure. The degeneracy obtained here cannot be elimi- 
nated easily, especially if, as in more general cases, quasi-degeneracies occur more 
often than exact degeneracy. The use of the level-shift trick is then the only way to 
prevent the reference function from mixing strongly with accidentally degenerate 
SX functions. 

5 Test calculations 

5.1 General framework 

The algorithm presented in the previous sections aims at optimising, by means of 
the variational method, the one-dimensional oscillator basis sets corresponding to 
a multiconfigurational reference wave function. As is usually done in electronic 
structure calculations, the MCSCF optimisation is often preliminary to a further 
configuration interaction calculation based on a larger multi-dimensional expan- 
sion. The major advantage of such a two-step procedure is to considerably reduce 
the number of configurations to be included in the CI wave function. This gain is 
expected to be more important when strong couplings occur. The goal of the test 
calculations presented in this section is to bring out the efficiency of our MCSCF 
algorithm for providing compact and well-balanced wave functions. 

In a first attempt to apply the present algorithm, we have implemented it into 
a general VSCF/CI computer program (program P O L Y M O D E  [-50]) that was 
quite compatible with the super-CI method. The new program is consequently 
based on the same methodological choices as the original one, i.e. the use of: 

(i) normal coordinates; 
(ii) the Watson hamiltonian, factorised as a sum of one-mode terms by fixing the 
inertia matrix to its equilibrium value; 
(iii) a quartic expansion of the PES; 
(iv) basis sets of harmonic oscillators (HOs). 

In addition to the availability of an existing CI code, another reason for this 
choice was to allow test calculations on 3- and 4-atom molecules to be performed 
using the same program. However, as mentioned in Sect. 1, this level of theory 
suffers from different approximations. We will thus not try here to compete with 
published larger-scale calculations performed with more adapted coordinate sys- 
tem and basis sets. Our purpose in the present work is to show what gain an 
MCSCF procedure can bring, using a given quartic ab initio PES. We will thus not 
refer to the corresponding experimental values or to other converged variational 
results, but rather to the FCI results obtained within the same methodological 
framework and the same PES. 

It must be stressed that the VMCSCF optimisation algorithm developed in this 
work is not limited to this particular context and can be adapted to any kind of 
hamiltonian or primitive basis functions. 

5.2 Application to the water molecule 

The first series of test calculations were done on the ground electronic state of the 
water molecule, using an ab initio potential energy surface calculated [26] at the 
SD-CI level with a triple zeta doubly polarised gaussian basis set. Although this 
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potential is far from the best available today, it was chosen in order to be consistent 
with previous VSCF/CI calculations [26] and to show how the MCSCF optimisa- 
tion can overcome the drawbacks of the one-configurational VSCF approxima- 
tion. Let us cite nevertheless, as the best reference PES for water, the one fitted by 
Jensen [36]. This PES was fit, within the MORBID model, to a large collection of 
spectroscopical data on several isotopomers. A modified version of this PES has 
recently been used in large-scale DVR calculations by Choi and Light [51], 
demonstrating its accuracy up to high vibrational energies (30 000 cm 1). 

We will focus here on two vibrational states (referred to as 200 and 0021 ) 
involved in a so-called "Darling-Dennisson" resonance. This system represents 
a classical example of such a phenomenon and has been analysed in the context of 
perturbation theory by Nielsen in 1951 [64]. However, the high degree of diagonal 
and non-diagonal anharmonicity showed by these states is not ideally represented 
by perturbation theory. It is also a good test for an MCSCF method since it 
requires the optimisation of the ninth and tenth states of the same (al) symmetry 
which are close in energy and interact strongly. In a previous study on H 2 0  [26], 
we showed that the vibrational transition dipole moments are very sensitive to the 
optimisation of the oscillator's basis set. In the particular case of the 000 --* 002 
transition, the single configuration VSCF optimisation distorted so much the wave 
function of the 002 state that the calculated transition moment was 510 times 
bigger than the converged FCI value. This system is therefore an ideal test case for 
our method which has been designed to correct the shortcomings of the VSCF 
procedure. 

5.2.1 Vibrational energies. The calculations were done in an LCHO basis set of 
10 HOs and with an MC expansion chosen including the lowest-lying 11 config- 
urations plus the 102 one, which appeared to be important in preliminary calcu- 
lations. In order to make the VMCSCF calculation converge on the two states of 
interest, we proceeded in two stages, using the state averaging formalism. In the 
first step, we made the procedure converge on a state average solution including the 
11 lowest-lying vibrational states, with an identical weight of 1/11 given to each of 
them. The converged oscillators from this calculation were then used to start the 
second step of the procedure, where only the 200 and 002 states were considered in 
the average with an identical weight of 0.5. The convergence of this latter calcu- 
lation has been quite difficult to achieve; we had to modify the weight of the two 
desired states stepwise, increasing them slightly, making the calculation converge, 
then using the new oscillators for a further run with a slightly greater weight and 
SO on. 

We also tried, in a third step, to reach convergence on each of the separate 
states, but this attempt failed due to dramatic problems of root-flipping induced by 
the strong mixing existing between both states. 

The LCHO basis set optimised at the two-state average VMCSCF level was 
then used in a larger CI calculation. The CI configuration list was generated by 
applying the excitation criteria described below. We selected every possible excita- 
tion of 4, 6 and 4 quanta on vl, v2 and v3, respectively, with respect to the ground 
vibrational state, with a limit of 10 on the sum over all vibrational quantum 
numbers. This leads to a configuration space of 92 functions. Let us introduce the 

1 This notation lists the quantum numbers associated to the symmetric stretching (vl), the bending (V2) 
and the antisymmetric stretching modes (v3), respectiveIy 
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Table 1. Effect of the one-dimensional basis set optimisation on the absolute vibrational 
energies (in cm-1) of the 1200) and 1002) resonant states of water 

Method Optimised on 1200) state 1002) state 
state a 

VSCF 200 12 471 12 865 
002 12 690 12 524 

VSCF/CI(12) 200 12 404 12 645 
002 13015 12593 

VMCSCF(12; 2) Average 12 382 1;2 588 

VSCF/CI(92) 200 12 360 12 522 
002 12413 12 517 

VMCSCF(12; 2)/CI(92) Average 12 360 12 524 

FCI(500) 12 360 12 517 

a Refers to the state for which the oscillator's basis set has been optimised 

following notation for the two-step variational calculation: 

VMCSCF(m; n)/CI(k), 

where m is the number of configurations in the reference MCSCF wave function, 
n is the number of averaged states and k is the number of configurations in the 
second step CI calculation. 

The VMCSCF(12; 2) and VMCSCF(12; 2)/CI(92) energy results are compared 
in Table 1 with the corresponding VSCF and VSCF/CI(k) (with k = 12 and 922) 
and FCI results, obtained in [26] within the same methodological scheme. FCI 
calculations involve 500 configurations. The VSCF and VSCF-CI values were 
obtained by optimising separately the LCHO basis set either on the 200 or on the 
002 states. 

Figure 1 illustrates the evolution of the individual energies of the 200 and 002 
states together with their energy separation AE, as a function of the level of 
calculation. The FCI results correspond to the converged variational solutions 
within our methodological choices (potential, coordinates, basis sets) and can 
therefore serve as reference values. In order to give an order of magnitude of the 
error induced by these choices on the energy splitting AE between the resonant 
states, let us compare the FCI value of 157 cm-1 with the corresponding experi- 
mental value of 243.5 cm -1 [76,77] and the best variational calculation [51] 
of 242.3 cm-  1. 

Coming back to internally consistent comparisons, we see that the VMCSCF 
and VMCSCF/CI results are close to the corresponding reference FCI values. On 
the other hand, the shortcomings of the VSCF and VSCF/CI methods also clearly 
come out. If at the VSCF level the optimisation of the 200 state gives qualitatively 
reasonable results, the same is not true when the 002 state serves to optimise the 
oscillator's basis set. An energy inversion of the two states occurs, with an even 

2 These numbers refer to the same configuration lists as those of the VMCSCF calculations 
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Fig. 1. Absolute and relative energies of the 
(200) and (002) states of water as a function of 
the level of calculation (notations are defined 
in the text). Convergence to the reference FCI 
values is observed 

more pronounced effect at the VSCF/CI(12) level of calculation. Larger CI calcu- 
lations are needed to correct this optimisation artefact and it still remains a basis 
set effect of 58 cm-  1 on AE at the VSCF/CI(92) level, this effect being mostly due 
(53 c m- i )  to the 200 state. 

5.2.2 Vibrational wave functions. The values of the CI coefficients corresponding to 
the main configurations (larger than 0.10) in the same calculations as above are 
shown in Tables 2 and 3 for the 200 and 002 states, respectively. 

The comparison between the 12 and 92 configurations basis sets shows the very 
stable and consistent behaviour of the VMCSCF approximation. No new major 
contribution appears in the larger CI set and the main coefficients are not signifi- 
cantly altered, for both states. The situation is different at the VSCF-CI level, 
especially for the 002 state, some contributions surge and the weights of the 
principal configurations change between the two configurations set. It is clear that 
those new contributions help to compensate for the distorted VSCF optimisation. 

A comparison of the one-mode functions, optimized at both VSCF and 
VMCSCF levels, clearly demonstrates the basis set effect. This is illustrated by 
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Table 2. Configuration interaction coefficients obtained for the 1200) state of water by various 
variational optimisation procedures 

Configurations VSCF/CI(12) VMCSCF VSCF/CI(92) VMCSCF 
200 a 002" ' (12;2) 200 a 002"  (12;2)/CI(92) 

200 0.983 0.946 0.959 0.974 0.833 
002 0.049 0.018 0.179 0.1187 0.181 
102 0.132 0.123 0.131 0.160 0.114 
100 0.341 
300 0.323 
40O 0.144 
120 0.111 0.269 

0.968 
0.179 
0.126 

a Refers to the state for which the oscillator's basis set has been optimised 

Table 3. Configuration interaction coefficients obtained for the 1002> state of water by various 
variational optimisation procedures 

Configurations VSCF/CI(12) VMCSCF VSCF/CI(92) VMCSCF 
200 a 002 a (12;2) 200" 002"  (12;2)/CI(92) 

200 
002 
102 
100 
300 
400 
120 

0.076 0.033 0.177 0.156 0.124 0.177 
0.961 0.948 0.979 0.940 0.974 0.975 
0.240 0.003 0.016 0.242 0.021 0.026 

0.152 

0.269 

Refers to the state for which the oscillator's basis set has been optimised 

the plots of L C H O  coefficients (expansion coefficients of Eq. (2)), given in Fig. 2 for 
the v = 2 functions on modes 1 and 3. One  observes a perfect matching of the 
V M C S C F  mode  functions with the corresponding VSCF ones only when these 
functions are occupied in the VSCF reference configuration. Large discrepancies 
are observed in the opposite case. 

The role played by configurat ion 102, added to the M C S C F  configurat ion list, 
clearly appears. It  contributes significantly to the wave function of the 200 state, at 
all levels of calculations (see Table 2). It  however contributes quite differently to the 
002 state (see Table 3) depending on the way the basis set has been optimised. It  has 
a consistent small weight at the V M C S C F  and V M C S C F / C I  levels, but  at the 
V S C F / C I  level, the same is observed only when the VSCF optimisation has been 
performed on the 002 state. This can be explained by the fact that  the 102 
configurat ion is a single excitation with respect to 002. According to the Brillouin 
theorem, the off-diagonal CI  hamil tonian matrix element between 102 and 002 is 
zero when the basis set has been optimised on the 002 state. The impor tant  weight 
(0.24) arising from an optimisat ion on the 200 state does not  have any physical 
meaning, but  is only an expression of the distort ion of the wave function expanded 
in a non-adap ted  basis set. 

These results clearly show the compactness  of the V M C S C F  wave function, 
giving a consistent description of the system with a small number  of configurations 
and is a much better starting point  for a further CI  calculation. 
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Fig. 2. Comparison of one-mode functions 
corresponding to v = 2 on modes 1 and 3, 
optimised at the VSCF and VMCSCF levels of 
calculation. Abscissa refers to the quantum 
number of the harmonic oscillator basis functions 

5.3 Application to the formaldehyde molecule 

An interesting case of vibrational resonances involving a three-state mixing is 
encountered in the formaldehyde molecule. Those states, referred 3 to as 3161, 2161 
and 51, lie around 4 8600 cm-1 and are, respectively, the second, third and fourth 
states of b2 symmetry belonging to the electronic ground state. The normal modes 
are numbered in the following way: v2, v3, v5 and v6, respectively, refer to the C-O 
stretching, the in-plane bending, the asymmetric C-H stretching and the rocking. 

Our VMCSCF method is particularly well suited for this particular system of 
relatively low-energy and strongly mixed states, it represents then a good test case, 
complementary to the higher-energy but lower-dimensionality case of the water 
molecule. To perform our vibrational calculation, we have used the adjusted 

This notation shows the conventional label of the vibrational modes, with the corresponding quantum 
number in subscript, if it is different from zero 

Energy gi.ven relative to the PES equilibrium energy 
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ab initio potential energy surface computed by Romanowski et al. [-20]. We also 
followed their vibrational study of those states, at the VSCF-CI level, to compare it 
with our VMCSCF approach, both in its ordinary and state-averaged forms. 

We again aim in this section at demonstrating the ability of a small dimension 
VMCSCF calculation to provide a well-balanced wave function describing a set of 
interacting states. This latter set represents the smallest possible to get a variational 
eigenfunction of these states. The multiconfigurational development has been 
limited to the first four configurations allowing the representation of the lower four 
states of b2 symmetry, both in the VSCF-CI and VMCSCF calculations. We of 
course do not intend with this minimal configurations expansion to compete with 
absolute energies obtained recently by Bramley and Carrington [53] from large- 
scale CI calculations involving between 130 000 and 500 000 functions. Our aim 
here, as for water, is to show the adequacy of the MCSCF optimisation for 
providing compact and well-balanced reference wave functions. 

As for water, the wave function has been optimised in several steps, although no 
serious problems of convergence were encountered. We first performed a VSCF 
calculation on the three states of interest, the anharmonic oscillators obtained by 
this procedure for the 3161 were used subsequently as initial guess for a VMCSCF 
optimisation on the average of the three interacting states. Using the oscillators 
coming out of this latter calculation as a new initial guess, we were able to produce 
the VMCSCF wave functions for each state separately (i.e. without any state- 
averaging), which was impossible for the two states studied in the water molecule. 

5.3.1 Vibrational energies. The vibrational energies obtained at those various 
levels of approximation are compared to the corresponding experimental results 
[78] in Table 4. One can notice, as before, the ambiguity generated by the 
VSCF-CI procedure which leads to an inversion of the 3161 and 51 states when the 
oscillator's basis set is optimised at the VSCF level. The VMCSCF optimisation on 
the average of the three states gives a balanced representation of them; the energies 
are closer to the experimental values (55 cm-1 of deviation, on average), as well as 
the spacing between the three states (28 cm- 1 of deviation, on average). 

The VMCSCF optimisation on each state lowers the vibrational energies from 
6 to 21 cm- 1, since it operates a more complete variational optimisation, without 
any average constraint. However, although the ordering is respected, the spacing is 
deteriorated. The optimised states are stabilised but the others are destabilised. For 
instance, when the oscillators are optimised for the 51 state, the 51 and 3161 states 

Table 4. Absolute energies (in cm l) of the first four b2 vibrational states of formaldehyde, obtained by 
different variational optimisation procedures 

State VSCF/CI(4) VMCSCF(4;3) VMCSCF(4; 1) Exp u 
optimised on state ~ optimised on state a 

3161 51 2161 3161 51 2161 

61 7048.2 7152.0 7048.1 7059.1 7094.5 7100.1 7055.5 7026.6 
3161 8547.4 8705.1 8551.0 8555.9 8539.2 8590.1 8630.0 8496.7 
51 8746.8 8619.2 8744.8 8703.7 8847.3 8682.0 8739.7 8620.8 
2161 8840.7 8917.1 8837.5 8827.2 8997.7 8868.5 8821.1 8777.5 

" Refers to the state for which the oscillator's basis set has been optimised 
b See ref. [78] 
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Table 5. Configuration interaction coefficients obtained by 
different variational methods for the 3161, 51 and 2161 states of 
formaldehyde 

State Configuration 

3161 51 2161 

Separate VSCF/CI optimisationfor each state 

3161 0.965 0.259 0.0496 
51 0.553 0.827 0.102 
2161 0.108 0.511 0.853 

VMCSCF optimisation for the average of the three states 

3161 0.927 0.367 0.070 
51 0.366 0.855 0.367 
2161 0.075 0.366 0.927 

Separate VMCSCF optimisationfor each state 

3161 0.960 0.271 0.065 
51 0.576 0.795 0.190 
2161 0.088 0.447 0.890 

is get closer. Such behaviour could increase artificially the mixing of the two states 
and in some way distort the wave function. The same problem occurs between 
the 2161 and 51 states when the basis set is optimised on the 2161. Inversely, the 
optimisation on the 3161 state tends to isolate it from the others since it is the 
lowest lying. 

5.3.2 Vibrational wave function. The configuration interaction coefficients cal- 
culated by the three techniques described above are given in Table 5. As suspected, 
the distortions in the energy spacing are expressed in the wave function by the 
relative importance of the coupling CI coefficients. When the basis set is optimised 
for each state separately, both at the VSCF-CI and VMCSCF levels, the 3161 
configuration has a large coefficient in the 51 wave function as well as the 51 
configuration in the 3161 state. In contrast, the wave function associated with the 
3161 state is quite pure, having a weight of 0.96 on the main configuration. 

The averaged optimisation gives a much better balanced representation of the 
three states, the 2161 and 3161 interacting perfectly symmetrically with the 51 and 
very weakly with each other. 

These results tend to demonstrate, in a vibrational framework, that the state- 
average MCSCF method, universally used today in Quantum Chemistry, is a 
powerful tool'for tackling clusters of interacting states in a balanced way. 

6 Conclusion 

The method described above is a vibrational adaptation of the MCSCF method, 
widely used in Quantum Chemistry, allowing a complete variational optimisation 
of the wave function. The computational bottleneck of vibrational spectroscopy is 
the anharmonic mode coupling phenomenon, which plays the same role as elec- 
tronic correlation in Quantum Chemistry. The MCSCF methods address part of 
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this problem by treating very completely the most important interaction terms. As 
a consequence, they will return a compact and well-balanced wave function, which 
can be useful for a subsequent physical interpretation. By contrast, the traditional 
SCF-CI methods, which are efficient in many circumstances, lead to an incomplete 
and ambiguous basis set optimisation, that can only be compensated by a large CI 
expansion, if strong interactions appear. Our tests on strongly interacting vibra- 
tional states in water and formaldehyde show that such situations occur as well in 
vibrational spectroscopy as in Quantum Chemistry. The huge methodological 
literature available in this latter field is a great reservoir of ideas for the present and 
future development of our optimisation algorithm. The use of a CI calculation in 
a VMCSCF-optimised oscillator's basis set, the state-averaging option and the 
very essence of the algorithm, based on the generalised Brillouin theorem are some 
examples of Quantum Chemistry techniques transported to the vibrational context. 

As the VMCSCF wave function concentrates a maximum of information in 
a minimal configurations set, it is very important to select carefully the configura- 
tions included in the MC expansion. For that purpose, a CI calculation in a larger 
set can be a good guide, it can also be used after a properly converged VMCSCF to 
improve the precision of the results by including higher-order contributions. 

The state averaging allows a better balanced representation of the interacting 
states with a coherent set of mixing coefficients and good energy spacing of the 
considered states, even with a minimal number of configurations. It also makes the 
procedure converge faster when root-flippin9 problems occur and can represent 
several optimal states in a single orthogonal basis set. 

Another interesting development would consist of extending the procedure 
towards the CASSCF approach. As in the electronic problem, this would allow 
incorporation of a greater number of configurations in the MC expansion and 
change the arbitrary selection of configurations in a choice of active oscillators. 
This in turn could give a deeper physical insight into the nature of the coupling 
between the different kinds of vibrational motions in the molecule. The VMCSCF 
method could also be an interesting tool in the calculation of infrared intensities on 
which the coupling anharmonicities have a great effect. The latter two aspects will 
be studied jointly in a forthcoming paper. 

Finally we shall insist on the fact that the computer program based on 
convenient but quite crude methodological choices (normal coordinates, HOs basis 
sets) was not designed to challenge other large-scale variational methods. It was 
however judged sufficient for illustrating the interest of an MCSCF-like method 
to give compact wave functions. A plan for the future is to implement the present 
algorithm into a state-of-the-art variational program and show how it can be 
helpful for reducing the size of the subsequent CI calculations. 
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